Multilens Contact Adhesion Tests

Alfred J. Crosby

Department of Polymer Science & Engineering University of Massachusetts - Amherst

NCMC – Adhesion Workshop

October 7, 2002

Outline

- Conventional Adhesion Tests
- Multilens Contact Adhesion Test
 Theory and Method
- Examples and Implementation
- High-Throughput Analysis
- Practical Points
- Summary

Understanding Polymer Adhesion

Motivation

- "Bolts and screws can be modeled with software..., but glue makers have yet to come up with a predictive model", Forbes, 10.29.01
- Myriad of variables control adhesion
- Existing techniques

Aerospace

Automotive

Electronic Packaging

Biomedical

- Surface Energy
- Molecular Weight
- Time
- Temperature
- Humidity
- Roughness
- Geometry

Peel Tests

Advantages

- Simulates typical use
- Easy sample preparation
- Semi-quantitative results
- Customer-friendly results

Disadvantages

- Results are not absolute
- Sample preparation difficult to standardize
- High statistical populations required
- Stress distribution complicates analysis (backing, adhesive, peel front)

Image from www.quadgroupinc.com

Axisymmetric Adhesion Tests

Advantages

- Removes backing influence
- Standardizes sample prep
- Bulk and interfacial contributions can be decoupled

Disadvantages

- Absolute analysis is timeconsuming
- Consumer knowledge is limited
- Backing properties must be measured separately

Typical Probe-type Adhesion Tests

General Procedure

- Place adhesive on rigid substrate
- 2. Position probe above adhesive
- 3. Move probe into contact with adhesive
- Hold in contact for arbitrary time
- 5. Separate probe from adhesive

Typical Measurement Data:

Applied Force Displacement (Contact Area)

Spherical Probe

Low Confinement

 $200 \mu m$

Flat Probe

High Confinement

Spherical Probe

Medium Confinement

Analyzing Probe Tests

Total Dissipation, W_{adh}\

- Total area under curve normalized by contact
- Correlates with peel energy

Tack Force, P_{tack}

- Maximum tensile force
- Typically associated with instability initiation

Strain at Failure, δ_{fail}

Maximum tensile strain

- Quantities are very useful for relative measurements
- Standardization is established, ASTM -
- Contact area images can provide great insight

Theory of Johnson, Kendall, and Roberts (JKR)

JKR Equation
$$a^3 = \frac{9R}{16E} \left[P + 3\pi GR + \sqrt{6GRP + \left(3\pi GR\right)^2} \right]$$

Details of Analysis

- 1. Measure radius of curvature, R
- 2. Record force, P
- 3. Measure contact radius, a
- 4. Correlate a & P data
- 5. Plot **a**³ vs. P and either:
 - Use two parameter fit to determine E and \mathcal{G} or -
 - Measure E independently and determine \mathcal{G} or -
 - Record δ in addition to independently determine E and \mathcal{G}
- 6. Plot G vs. da/dt to define material property

Special Cases

Finite-Size Corrections (for a>h)

Shull, K.R., et al, *Macromol. Chem. Phys.*, 1998, **199**, 489-511. Crosby, A.J. et al, *Journal of Applied Physics*, 2001, **88**, 2956-2966.

Viscoelasticity Corrections

Lin, Y.Y., et al, *Journal of Applied Physics*, 1999, **32, 2250-2260.** Johnson, K.L., ACS publication, 2000.

Outline

- Conventional Adhesion Tests
- Multilens Contact Adhesion TestTheory and Method
- Examples and Implementation
- High-Throughput Analysis
- Practical Points
- Summary

A Combinatorial Adhesion Test: MCAT

- Measure a, d
- Determine G

- •Possible Variables:
 - Temperature
 - Thickness
 - Strain
 - Surface Energy

Qualitative Analysis

- Contact history images give qualitative information.
- Quickly map the relative adhesion of a surface or library.

How do we calculate *G*?

$$G = \frac{3(P'-P)^2}{32\pi E \bullet a^3} \cdot f_P(a,h)$$

$$C = \frac{3}{8Ea} = \frac{d\delta}{dP} = \frac{\delta' - \delta}{P' - P}$$

- Minor misalignment tolerable
- Each lens has a unique δ_0
- E must be measured independently or report *G*/E
- Modify for confinement or viscoelasticity

The Instrument

Time, cost, and precision

Main Components

- Imaging System (I.e. microscope)
- Automated x-y stage
- Displacement control (i.e. actuator or micrometer)
- Displacement sensor
- Computer with DAQ card
- Alignment system (optional)
- Load cell (optional)

The Libraries

100 mm

Outline

- Conventional Adhesion Tests
- Multilens Contact Adhesion Test
 Theory and Method
- Examples and Implementation
- High-Throughput Analysis
- Practical Points
- Summary

Contact Experiment

Conditions:

dd/dt = 1 mm/s

 $h_{PS \text{ strip}} = 30 \text{ nm}$

Temperature = 25°C

Contact at Elevated Temperatures

Conditions:

dd/dt = 1 mm/s

 $h_{PS \text{ strip}} = 30 \text{ nm}$

Temperature ~ 80°C

Qualitative Analysis

Mapping Multivariable Environments

Quantitative Measurements

PS/PS Contact History

PS/PDMS Contact History

Same Sample, Same Conditions!

Quantitative Measurements

All weld spots fracture at same applied energy release rate.

Time-Temperature dependence for interfacial strength development indicated by changing weld spot size and thickness dependence.

Outline

- Conventional Adhesion Tests
- Multilens Contact Adhesion Test
 Theory and Method
- Examples and Implementation
- High-Throughput Analysis
- Practical Points
- Summary

Automated Analysis

"Jump" Into Contact

JKR "Zero Force" contact radius

$$\mathbf{a_o} = \left(\frac{27\pi R^2 \mathcal{G}}{8E}\right)^{\frac{1}{3}}$$

For soft, elastic solids, G is defined by thermodynamic work of adhesion.

 δ_{critical} = δ at "jump" into contact

Defined by balance of surface and elastic restoring forces

MultiLens Contact Technique

Advantages of Multilens Contact

- Maximize sensitivity and visualize contact
- Investigate effects of roughness on surface interactions
- Investigate dynamics of surface attraction and separation

Materials

Lens Arrays

- Crosslinked
 Polydimethylsiloxane
 (PDMS)
- E = 1.0 Mpa

• $\gamma \sim 20 \text{ mJ/m}^2$

Substrates

- Bare glass slide (ozone cleaned)
 - $\gamma = 67 \text{ mJ/m}^2$
- n-octyl dimethylchlorosilane coated glass slide
 - $\gamma = 28 \text{ mJ/m}^2$
- Fluorinated glass slide
 - $\gamma = 10 \text{ mJ/m}^2$

Quantifying Jump Distance

Approach substrate at 4 nm/s

Dynamics of Contact

Outline

- Conventional Adhesion Tests
- Multilens Contact Adhesion Test
 Theory and Method
- Examples and Implementation
- High-Throughput Analysis
- Practical Points
- Summary

Practical Points

- Every point does not need to be different.
- Onset of cavitation or fingering is related to strain/stress of "tack force"
- Contact adhesion tests can be used for both weak and strong adhesion
- •Control *g* to measure mechanical properties

Practical Points

- Size of lens and array can be modified
- A row of standard contacts can be incorporated
- Either lenses or substrate can be designed with softer materials

Summary

- Quantitative and qualitative adhesion testing is difficult
- Axisymmetric adhesion tests offer enhanced standardization and information
- Combinatorial approaches can simplify screening processes
- MCAT methodology is general